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Abstract
We present a model equation of state for C60 based on a variational series
mean spherical approximation for a double Yukawa fluid. This allows
us to investigate the liquid–vapour coexistence curve and calculate the
thermodynamic properties of liquid C60. The comparisons with computer
simulation results, based on the Girifalco potential, suggest the importance of
treating the attractive tail of the potential accurately. The estimated critical
parameters, Tc = 1943 K, ρc = 0.477 nm−3 and Pc = 34.2 bar, are in
good agreement with Gibbs ensemble Monte Carlo simulation predictions. The
results are discussed, making reference to previous studies.

1. Introduction

Since the discovery by Krätschmer et al [1] of fullerene C60, knowledge of the molecular and
solid state chemistry of C60 has advanced rapidly. Many fullerene-derived solid phases have
been synthesized with novel properties and potential applications [2]. The low temperature
structure has been identified to be cubic Pa3 with orientationally ordered molecules [3]. At
room temperature C60 molecules are known to undergo hindered rotations [4]. The high
temperature data are sparse. The structure of liquid C60 is still of considerable interest [5].
Recently, inelastic neutron scattering spectroscopy experiments [6] have provided useful
information on the complicated C60 structure and on the intermolecular interactions.

The structures of small (C60)N clusters, 2 � N � 25 [7], and large clusters, 13 �
N � 80 [8], have been studied by means of molecular dynamics (MD) simulations. These
calculations, based on the Girifalco [9] intermolecular potential, have predicted possible magic
numbers in the size distribution of neutral (C60)N clusters. The large clusters lose the C60
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molecular structure at temperatures of 700–800 K, which is in agreement with the experiment
of Martin et al [10] at 800 K. The fullerenes slowly sublimated leaving graphitic carbon
particles as a residue while recent MD simulations [11] have predicted that an isolated C60

molecule is stable against fragmentations up to ∼4500 K. In addition, the low density vapour
phase is stable.

Hagen et al [12] reported a Monte Carlo (MC) simulation and concluded that C60 has no
stable liquid phase, whereas the MD simulations of Cheng et al [13] and Rey et al [7] suggested
that the liquid phase would only be observed in a narrower temperature range compared to that
for rare gas systems. Hasegawa and Ohno [14] provided an explanation for the discrepancy
between MC and MD simulations by showing the effect of the range of the attractive part of
the pair potential on the free energy. The truncation of the pair potential, to save computer
simulation time, leads to 5% reduction of the free energy which, in turn, leads to an ∼100 K
shift of the liquid–vapour (L–V) phase boundary. Accordingly the liquid phase is suppressed
towards the metastable phase, as appeared in the MC simulation of Hagen et al [12].

Quite recently, extensive Gibbs ensemble Monte Carlo (GEMC) simulations by Caccamo
et al [15, 16] and constant-NV T Monte Carlo simulations by Hasegwa and Ohno [17, 18]
were performed with the aim of establishing the effect of finite size on the existence of the L–V
binodal line as well as on the location of its critical point. The GEMC simulations indicated
that, with N = 300, 600 and 1600 particles, the overall shape of the binodal is not much
influenced by finite size effects while both the critical temperature, Tc, and the critical density,
ρc, have a tendency to become higher with increasing particle number N in the simulation
box, which is in contradiction to the NV T MC results. It has also been reported [17] that
the absolute free energy analysis used in the NV T MC simulations seems to suffer much less
from the finite size effects.

The density functional theory (DFT) provides an accurate tool when it is combined
with a thermodynamically consistent integral equation method. The DFT was applied
to C60 in two advanced approximations, the simplified perturbation weighted density
approximation (SPWDA) [19] and the generalized modified weighted density approximation
(GMWDA) [14, 20]. Both approaches have predicted the existence of a liquid phase of C60

but in a very narrow range of temperature (<20 K) with Tc = 1960 K. The narrow range of
the liquid phase has been ascribed [20] to the well known defect of the MWDA which is due
to the shortcoming of the reference system as well as the hard sphere (HS) equation of state
used.

On the other hand, highly accurate structural theories of fluids are applied to the
determination of the phase diagram of C60. The modified hypernetted-chain (MHNC)
theory [21] agreed with the MD simulation on the existence of the liquid phase but over
a wider range of temperature (1600 and 1920 K for the estimated triple point and critical
temperature, respectively). The hierarchical reference theory (HRT) [22] yields rigorously
flat isotherms which allows an accurate determination of the L–V coexistence curve without
restoring the Maxwell equal area construction, which is known to have high uncertainty near
the critical point. The HRT predicted a relatively high critical temperature Tc = 2138 K.

All previous computer simulations [7, 12–18] and theoretical calculations [14, 19–22]
were based on the assumption of rigid spherical molecules interacting via a central potential.
The well known Girifalco potential [9], VGr(r), was used:

VGR(r) = −α

[
1

S(S − 1)3
+

1

S(S + 1)3
− 2

S4

]
+ β

[
1

S(S − 1)9
+

1

S(S + 1)9
− 2

s10

]
(1)

where s = r/d , α = N 2 A
12d6 and β = N 2 B

90d12 , with N = 60 atoms for C60 fullerene and d is its
diameter. The parameters A and B belong to the 6–12 potential that describes the interaction
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between two carbon atoms,

VC(r) = − A

r6
+

B

r12
. (2)

According to Girifalco, the best values of A, B and d were obtained by fitting the experimental
data for the heat of sublimation and the lattice constant of the FCC crystal. This procedure gives
d = 7.1 Å, A = 32.0 × 10−60 erg cm6 and B = 55.77 × 10−105 erg cm12. Cheng et al [13]
and Cheng and Klein [23] used A = 23.8 × 10−60 erg cm6 and B = 36.88 × 10−105 erg cm12.
Very recently, Abramo et al [24] reported an atomistic molecular dynamics simulation in
which the atomistic representation of a C60 molecule is taken into account, i.e. the spatial
distribution of carbon atoms within the C60 fullerene is directly taken from experimental data,
but still interacting via a 6–12 potential with the other set of adjustable parameters, A and B .
These authors reported the superiority of the atomistic description of the potential over the
early Girifalco central potential (Gr) in predicting experimental properties of C60 to an overall
quantitative level of accuracy. Both atomistic simulations of Cheng et al [13] and Abramo
et al [24] confirmed the existence of a dense fluid phase at temperatures above 1800 K. Also it
has been reported that only at higher densities do the central potential and atomistic potential
approaches yield rather different predictions for the energy and pressure and there are no
substantial differences at low densities.

It is now well established from all above-mentioned computer simulations and integral
equation approaches that the central pair interaction of rigid C60 molecules proposed by
Girifalco [9] produces a stable liquid phase but in a narrow range of temperatures. This
conclusion has also been confirmed by Alonso et al [25]. Of course C60 molecules have
internal degrees of freedom. A modest acknowledgment of the assumption of non-rigidity
is made in the study of Broughton et al [26]. They used a model potential of non-rigid C60

molecules in which the radius of each molecule, Ri , was allowed to be a dynamical variable,
namely,

VBr(ri j ) =
∑
i< j

V (r−
i j ) +

∑
i

J (Ri − R0)
2, (3)

where R0 was set to be 3.571 Å and the so-called soft spring constant, J , was varied to give
a breathing-mode frequency of 107.3 cm−1. Broughton et al [26] acknowledged that this
value of J is much lower than any of the experimentally observed intramolecular vibrational
frequencies of C60, which are in the 400–1600 cm−1 range. Broughton et al obtained the
phase diagram of such a model of C60 by isothermal–isobaric molecular dynamics simulation
(N PT MD). In their calculations no stable liquid phase was found. However, the model of
non-rigid spheres proved to make some predictions of some properties of a metastable liquid
phase, with critical thermodynamic constants Tc = 1850 K, ρc = 0.51 nm−3 and Pc = 30 bar.
No doubt the non-rigidity of the molecules has an effect on the characteristics of the liquid
phase, but one should be cautious with this model because of its limitation of using a quite low
breathing-mode frequency.

A new intermolecular potential for C60 was derived from ab initio calculations by Pacheco
and Prates [27]. The ab initio potential is considerably softer for short range forces than the
Gr potential. Ferreire et al [28] used this new interaction potential in NV T MC simulations
which predicted the existence of a liquid phase of C60 for densities between 0.845–0.468 nm−3

and temperatures between 1881 and 2012 K. These results are found to be much higher than
all earlier simulations.

On the other hand, Guerin [29] reported a double Yukawa (DY) potential with parameters
fitted with a Lennard-Jones potential in equation (2) for carbon–carbon interaction, with
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Figure 1. Intermolecular potential of C60. The DY potential of the present work (solid thick line),
the DY potential with parameters evaluated by Guerin [29] (solid thin line) and the Girifalco [9]
potential (open circles).

parameters taken from [30]. Then integrating over C60 cages gave an effective pair potential
for C60 molecules. VDY(r) is

VDY(r) = Eε

x
[e−λ1(x−1) − e−λ2(x−1)], (4)

where x = r/σ0, σ0 = 9.5904 Å, ε/kB = 3277.7 K, with kB being Boltzmann’s constant.
E = 1.8738, λ1 = 40.736 and λ2 = 7.4071 are fitting parameters. ε and σ0 are known to be
the depth of the attractive well and the position of the zero of the potential, respectively.

In the present work we consider a system of rigid spherical C60 molecules interacting
via a central potential. We employ the DY potential, equation (4), but with parameters fitted
directly with the Gr potential, equation (1). Our fitting parameters are σ0 = 9.5929 Å,
ε/kB = 3218.5 K, E = 1.7293, λ1 = 43.344 and λ2 = 6.531. A typical graph of the
intermolecular potential for rigid C60 is shown in figure 1. The Guerin [29] DY potential has
a slightly deeper well depth and shorter range of the attractive pocket comparable to both the
Gr potential and our fitted DY potential. In section 2, we employ the variational scheme in
calculating the L–V coexistence as well as the thermodynamic properties of the liquid phase.
This is of particular interest since the analytical solution of the Yukawa closure is available in an
accurate form within the series mean spherical approximation (SMSA) formalism, originally
set up by Henderson [31] and reformulated and tested by Duh and Teràn [32]. In section 3, we
present our results with comparison with available theoretical and simulation results. Finally,
in section 4, a brief summary and conclusions of the work are given.

2. Theoretical formalism

We consider a system of N molecules of C60 interacting via a pair potential VDY(r) which can be
split into a repulsive short range part V0(r) and a long range attractive part V1(r). Accordingly,
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the Helmholtz free energy per particle of the system as a function of the number density, ρ,
and temperature, T , can be written within the variational theory of classical fluids [33] as

β F � β F0 + β F1 (5)

where β = 1/kBT , F0 is the free energy of the reference system and F1 corresponds to the
contribution from V1(r). As regards the choice of the reference system, we choose a suitable
combination of scaled hard sphere (HS) entropy due to Bause and Colot [34] and the ideal gas
contribution, namely,

β F0 = −1 + ln(ρ) − 3

2
ln

[
2πmkBT

h2

]
+ (a + 3b − 1) ln(1 − η)

+
(6 + 2a + 6b)η − (3 + 3a + 9b)η2 + 2bη3

2(1 − η)2
(6)

with a = b = 2/3 and η = π
6 ρσ 3 is the packing fraction. m denotes the molecular mass and h

is Planck’s constant. The scaling theory equation of state (EOS) for HS fluid is slightly more
accurate than the well known Carnahan and Starling EOS [35]. The HS diameter σ depends
on ρ and T via the Gibbs–Bogoliubov (GB) variational approach [33],(

∂β F

∂σ

)
ρ,T

= 0. (7)

It may be noted that the optimizing diameter σ achieves a best free energy estimate of
equation (5) and establishes the link between F0 and F1, where the latter stands for

β F1 = 2πρ

∫ ∞

σ

βV1(r)gHS(r)r2 dr, (8)

where gHS(r) is the HS radial distribution function. In equation (8), V1(r) can be replaced
by VDY(r) from equation (4). The use of the DY potential further facilitates obtaining an
analytical expression for F1 by introducing the Laplace transform of rgHS(r), defined as

G(λ∗) =
∫ ∞

1
r∗gHS(r

∗)e−λ∗r∗
dr∗. (9)

Equation (8) yields

β F1 = 12ηE

σ ∗T ∗ [eλ1 G(λ∗
1) − eλ2 G(λ∗

2)]. (10)

In equations (9) and (10), we used the reduced quantities

σ ∗ = σ

σ0
, r∗ = r

σ
, λ∗ = λσ ∗, and T ∗ = kBT

ε
.

One can readily derive the expressions for pressure, P , and chemical potential, µ, from
equation (5) as

β P = β P0 + β P1 (11)

and

βµ = βµ0 + βµ1 (12)

via the thermodynamic relations

β P = ρ2

(
∂β F

∂ρ

)
T

, and βµ = β F +
β P

ρ
.
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It is straightforward to obtain the derivatives of the free energy contributions F0 and F1 of
equations (6) and (10), respectively, with respect to ρ, yielding

β P0 = 1 + η + η2 − aη3 − bη4

(1 − η)3
(13)

β P1

ρ
= β F1 +

12Eη2

σ ∗T ∗ [eλ1 G ′(λ∗
1) − eλ2 G ′(λ∗

2)] (14)

where

G ′(λ∗) =
(

∂G(λ∗)
∂η

)
T

. (15)

The detailed expression for G(λ∗) can be obtained in an analytical form from the recently
developed SMSA of [31, 32],

G(λ∗) = e−λ∗

24η

5∑
n=1

vn(λ
∗, η)

nT ∗n−1
. (16)

The sub-functions vn(λ
∗, η) are given explicitly in [32]. We took the analytical derivative of

G(λ∗) with respect to η but the final expression is too lengthy to accommodate in the present
paper.

3. Results and discussion

To assess the quantity of the present EOS given in equation (11) we compare the pressure
with the recent NV T MC simulation results of Hasegawa and Ohno [17]. Figure 2 illustrates
typical examples of the pressure van der Waals loop as obtained from equation (11) and the
NV T MC [17]. These results are generally in good agreement with the simulation results in
the vapour and liquid branches of the van der Waals loop, whereas the middle section of the
loop for the interfacial region does not show close fitting (but this will not have a dramatic
effect on the overall phase boundaries). We note that the discrepancy between the pressure
obtained from the low order virial EOS is P = ρkBT [1 + B2ρ + B3ρ

2] with exact B2 and
B3 [17] and the present EOS and the computer simulations results. This comparison indicates
the superiority of the present EOS over the virial equation of state.

Next, we turn to the calculation of the L–V binodal line, following the thermodynamic
conditions for phase equilibrium:

P(ρV, T ) = P(ρL, T ) (17)

µ(ρV, T ) = µ(ρL, T ). (18)

By enforcing equality of pressures and chemical potentials in the two phases at a fixed
temperature we are able to determine uniquely the densities ρV and ρL of the coexisting vapour
and liquid phases. This method fails in the vicinity of the critical temperatures where the van
der Waals loop diminishes, yielding a large uncertainty in determining the critical parameters
Tc and ρc. These parameters can be estimated by an analysis of the results in the vicinity of the
critical point. Following a fitting procedure used by several authors [16–18], the L–V critical
point was determined by assuming the scaling law ρL–ρV = C(Tc − T )0.32 and the law of
rectilinear diameters ρL +ρV = 2ρc + D(T −Tc), where C and D are fitting parameters and 0.32
represents the critical exponent in the case of non-classical fluid. The values of Tc and ρc can be
inserted in equation (11) to give the critical pressure Pc. The critical compressibility ratio can
then be calculated, Zc = Pc

ρckBTc
. The results for critical parameters for all previous calculations

are reported for convenience in table 1. The pair potential used in each calculation is also shown



A model EOS of liquid C60 and thermodynamic properties along the liquid–vapour coexistence curve 4417

Figure 2. Comparison of the pressure from the present EOS obtained through equation (11) (solid
line), the N V T MC simulation pressure [17] (open circles) and the virial pressure [19] (open
triangles).

for better comparison. Our estimate of Tc agrees well with recent GEMC simulation results
of Coccamo et al [15] while Pc and ρc are relatively overestimated. According to Alonso
et al [25] Zc should have a value near 0.29 for heavier condensed rare gases and 0.32 for C60

liquid–vapour transition. This prediction of Zc is based only on the reported phase diagrams
of Hasegawa and Ohno [17] and of Tau et al [22]. Surprisingly, the two approaches gave the
same value of Zc. Here we calculated Zc for all reported phase diagrams and the results are
presented in table 1. It is clear that this value of Zc = 0.32, reported by Alonso et al [25], is not
standard. According to our prediction as well as [15, 28], the value of Zc may be around 0.28,
which is even closer to the predicted value for the rare gas fluids and also agrees with the value
of 0.27 that was calculated by March and Tosi [36] based on Dieterici’s phenomenological
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Table 1. Critical parameters of C60 compared with those of the previous theoretical calculations
and computer simulations. The pair potential used in each calculation is shown as DY, GR and ab
for double Yukawa, Girifalco and ab initio potential, respectively. In molecular dynamics (MD)
and Monte Carlo (MC) computer simulations the number of particles N used in each simulation is
indicated.

Method Ref. Pair potential N Tc (K) ρc (nm−3) Pc (bars) Zc

Present work DY 1943 0.477 34.2 0.27

PY [29] DY 1940 0.5

SPWDA [19] GR 2200 0.49
GMWDA [20] GR 1960 0.41
MHNC [21] GR 1920 0.43

HRT [22] GR 2138 0.5 46.5 0.32

HMSA [13] GR 2050 0.56

MD [13] GR 256 1900(100) 0.56(0.06) 25 0.17

GEMC [12] GR 256 1798(10) 0.42
[15] GR 300 1924 0.39

600 1927 0.4 29 0.27
1500 1941 0.42

Free energy MC [16] GR 1940 0.42 27 0.24
N V T MC [17] GR 256 1980 0.439

500 1976 0.445 38 0.31
[28] ab 500 2011.7 0.4676 37 0.29

MD [26] Non-rigid spheres 256 1850 0.51 30 0.23

equation of state. It is important to mention that the low compressibility ratio of 0.23 for the
non-rigid sphere model of Broughton et al [26] is due to the additional degree of freedom
introduced by the low frequency isolated breathing mode, which leads to lower Tc, lower Pc

and higher ρc than all other reported calculations.
Figures 3(a) and (b) show the high temperature phase diagram of C60 determined using

the present EOS based on the variational series mean spherical approximation (VSMSA)
formalism. In figure 3(a), the present results for the L–V binodal curve are compared with the
GEMC results of Caccamo et al [15] obtained for N = 600 and 1500 and with NV T MC results
of Hasegawa and Ohno [17]. Also we compare with similar calculations by Guerin [29] based
on a similar DY potential but with the Percus–Yevick (PY) approximation for the hard sphere
radial distribution function. We find that our results and both GEMC computer simulation
results are in good agreement except in the critical region. In this comparison we note several
points:

(i) Our predicted Tc of 1943 K agrees well with the GEMC result of 1941 K while our
predictions of the critical density and pressure are ∼13% and ∼18%, respectively, higher
than the GEMC predictions.

(ii) Both the present EOS and Guerin EOS [29] are based on the GB variational scheme.
Our L–V coexisting densities show better agreement with the computer simulation than
the Guerin results which indicates the improvement of the SMSA over the earlier PY
approximation.

(iii) The results of the present theory overestimate the vapour density generally as well as in
the vicinity of the critical point, which may be attributed to the shortcoming of either the
GB variational scheme [33] at low density or the SMSA for the DY potential.
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(a) (b)

(c)

Figure 3. (a) Liquid–vapour coexistence curve of C60 obtained from the present model (solid
line), the results of the GEMC of Caccamo et al [15] (solid circles for N = 600 and solid
triangles for N = 1500), the N V T MC simulation results [17] (open circles) and the results
of similar theoretical calculations by Guérin [29] (open squares). (b) Pressure versus temperature
phase diagram corresponding to the binodal curve shown in (a): the present work (solid line), the
GEMC simulations [15] (N = 600 solid circles, N = 1500, solid triangles) and the N V T MC
simulations [17] (open circles). (c) Internal energy per particle of the coexisting liquid and vapour
of C60, UL and UV, respectively: the present work (solid line) and the GEMC simulations [15]
(N = 600, solid circuits, N = 1500, open triangles).

Figure 3(b) shows the P–T representation of the phase diagram. It appears that the pressure
calculated from the present model agrees well with the GEMC results [15] at intermediate
temperatures and deviates substantially when approaching the critical temperatures. The
accuracy of the treatment of the attractive force contribution via the SMSA can be assessed



4420 M Bahaa Khedr et al

Table 2. Thermodynamic properties of liquid C60 calculated along the liquid–vapour coexistence
curve.

Hard sphere Packing Isothermal Heat
Temperature Density diameter fraction compressibility Entropy capacity
T (K) P (nm−3) σ (Å) η KT (bar−1) S (cal K−1) Cv (cal mol−1 K−1)

1600 0.9755 9.5356 0.4429 0.271 35.712 3.024
1650 0.9446 9.5341 0.4286 0.353 36.332 3.085
1700 0.9105 9.5327 0.4130 0.480 36.971 3.148
1750 0.8719 9.5313 0.3953 0.694 37.644 3.216
1800 0.8269 9.5300 0.3747 1.106 38.368 3.290
1820 0.8062 9.5294 0.3653 1.393 38.682 3.322
1840 0.7833 9.5289 0.3549 1.824 39.016 3.358
1860 0.7572 9.5283 0.3430 2.539 39.380 3.397
1880 0.7270 9.5278 0.3292 3.858 39.784 3.441
1900 0.6883 9.5272 0.3117 7.207 40.275 3.494
1910 0.6627 9.5270 0.3000 11.864 40.584 3.529
1920 0.6280 9.5267 0.2843 28.512 40.988 3.573
1924 0.6146 9.5266 0.2782 42.288 41.142 3.588
1928 0.5981 9.5266 0.2708 77.736 41.328 3.606
1930 0.5903 9.5265 0.2672 106.836 41.416 3.614
1932 0.5817 9.5264 0.2633 160.644 41.512 3.623
1934 0.5737 9.5264 0.2597 233.630 41.601 3.630
1936 0.5668 9.5263 0.2566 290.170 41.678 3.636
1938 0.5584 9.5263 0.2528 383.090 41.772 3.643
1940 0.5344 9.5262 0.2419 3 022.299 42.030 3.664
1941 0.5185 9.5261 0.2347 6 247.065 42.199 3.676
1943 0.4771 9.5261 0.2159 12 568.68 42.640 3.700

by the internal energy comparison as the entropy effects are controlled largely by the hard
sphere contribution. A more direct inspection of the accuracy of the SMSA at low and high
densities is shown in figure 3(c). The internal energy per particle is compared with the GEMC
simulations results along the bimodal curve. It is clear that UL agrees well with the GEMC
results while Uv deviates slightly. This explains the deficiency of the SMSA at low densities
which is also obvious in figure 3(a).

Finally, we calculated the isothermal compressibility, KT = 1
ρ
( ∂ρ

∂ P )T , entropy, S =
−( ∂ F

∂T )ρ and heat capacity at constant volume, Cv = −T ( ∂2 F
∂T 2 )ρ , using our model of C60

along the liquid side of the L–V coexistence curve. The results are given is table 2. It
is worth mentioning that the hard sphere diameter σ shows the correct behaviour as it
decreases with increasing temperature, which is expected for expanded liquids. The isothermal
compressibility diverges rapidly on approaching the critical temperature, which is a typical
criterion for the critical phenomena. Both entropy and specific heat change slightly along the
L–V curve, which indicates that the smaller the entropic effect, the larger the energetic effect
for enhancing the phase transition for materials with extremely short range attractive forces, as
in the case of C60. Unfortunately, there are neither experimental measurements nor computer
simulation results available for comparison.

4. Summary and conclusions

The present equation of state is formulated from three main ingredients:

(i) the hard sphere reference system via the scaled particle theory for incorporating the
contribution due to the short range forces among the C60 molecules;
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(ii) the SMSA, which is employed via the double Yukawa potential to incorporate the effect
of long range forces;

(iii) the suitable link between the free energy of the reference system and the contributions
arising from the long range attractive interactions, established via the GB variational
theory.

The present EOS is analytically derived with greater accuracy, which facilitates obtaining
analytical expressions for the Helmholtz free energy and other thermodynamics functions.
Moreover, the present EOS provides a ready-to-use model for C60, which can be easily extended
to other fullerenes of higher order such as C78.

The L–V coexistence curve compares well with simulation results available in the literature
for the Gr potential. The predicted critical parameters are consistent with the recent computer
simulation results. However, the present theory shows two major deficiencies:

(a) the vapour density is overestimated, which, in turn, gives a higher critical density than
that estimated by most computer simulations available;

(b) the predicted pressure is relatively high compared to other calculations, especially at high
temperatures.

These deficiencies may be attributed to the shortcoming of the GB variational scheme [30] at
low densities or the inaccuracy of the SMSA formalism at low densities. In order to clarify the
uncertainties on this point, one needs to perform computer simulations on the double Yukawa
system and compare with theoretical calculations, based on different perturbation schemes.
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